

AMERICAN POWERSYSTEMS

Good Facts to Know about Li-ion BESS

Who is This Dude?

- Curtis Ashton
 - Electrical Engineer & Master Electrician
 - Employment History: SRP, USWest/Qwest/CenturyLink
 - Employer: Training Director for American Power Systems LLC (subsidiary of EastPenn/Deka Battery Manufacturing)
 - Past Chair of IEEE PES ESSB (Energy Storage and Stationary Battery)
 - WG Chair, Vice-Chair, Technical Editor, Primary Author for a Bunch of IEEE and ATIS/ANSI Battery Standards
 - Member of NFPA 855 Technical Committee
 - Chair of 3 Task Groups within Committee

Why Storage

Li-ion Accounts for 95% of Global ESS Installs

Source: Silicon Ranch Corporation

Why Li-ion vs Other Batteries if Less Fire Safe?

- 1. Space (½ most others)
 - Space Advantage Goes Away Indoors if Newer Fire Code Adopted
- 2. Weight (¼ ½ most others)
- 3. Cycles (3x most others)
- 4. Monitoring (built in with Li-ion BMS)
- 5. Maintenance (¹/₃ traditional)

Why is there So Much Concern About Li-ion if

we All Carry One in our Pockets?

- Internal Short Circuits Causing Overheating of Individual Cells
 - Manufacturing Defects (1 in 40,000,000 cells) Leading to Shorts (Typically)
 - Used to be 1 in 10,000,000
 - OverCharging (Failure of the BMS)
 - Mechanical Damage (e.g., car crash)
- Inherent Flammability Issues
 - High Stored Energy Density
 - Flammable Electrolytes
 - Oxide Positives that Release O₂ at High Temperatures
 - Graphite (Carbon) Negatives that Release Lots of Soot
- Cell-to-Cell Propagation
 - A Little Fire Gets Really Big
 - A fire of a Single Cell in a Galaxy S7 Note, or 3 cells in a Laptop is Pretty Small (Toss it to the Side and Let it Burn), but a 13.5 kWh "usable capacity" residential "Powerwall" has approximately 2,000 cells in it

Is the Safety Improving

Sources: (1) EPRI Failure Incident Database, (2) Wood Mackenzie. Data as of 12/31/23.

Source: Id Energy

What Changed to Greatly Increase Fire/Safety?

- IEC 62619 (2017) and UL 1973 (2018 Edition) Added Cell-to-Cell
 Propagation Testing
 - UL 9540A Large Scale Fire Testing
 - These Drove Better Internal Module Designs to Limit Propagation, and Choice of a "Safer" Technology (LFP) for BESS
- Model Fire Codes:
 - IFC-2018 First to Really Address Li-ion Batteries
 - Latest Edition (2024) Refers to NFPA 855 (2023 Edition) for Batteries
 - 855 Requires ≤ 30% SOC Indoor Storage without Special Mods
 - NFPA 1-2021 Referred Directly to 855 (2020 Edition) for Batteries
 - Adoption by Jurisdictions of Latest Fire Code Can Take Years
 - IATA/ICAO 30% SOC Max For Air Transport Since 2018/2023
 - Same Rule May be Coming for Rail (RID), Ships (IMDG), and Trucks (ADR)?

855

Fire Code

Key Model Fire Code Rules to Limit Propagation

- 3' Spacing Rules for 50 kWh Indoor
- 10' Outdoor Container Spacing
 - This is a Huge Change and has Mostly Limited Fires to Single Container
- Forcing UL 9540 Listing (Which Includes 1973) and UL 9540A Large Scale Fire Testing
 - Leads to Less Thermal Chemistry Choices and Lower Propagating Designs
- Deflagration Venting
- Movement Towards Moving Residential Li-ion BESS Out of Living Spaces and Eventually Even Out of Garages

Evolving Li-ion FireFighting Suppression Strategies

- Copious Amounts of Water
 - Clean Agent or Nitrogen Suppressants Have Lost Favor For Large Scale Use Because Li-ion Produces its Own Oxygen
 - Possibly Targeted Nitrogen or Clean Agent or Water Based on Early Detection Technologies
 - Let it Burn and Put Water on it From the Outside
 - Don't Open the Doors to Allow Oxygen Back in such that Reignition can Occur Until You've Put Copious Amounts of Water on it
 - Higher Flow Sprinklers (About 3x Typical)
 - AHJs May Allow StandPipes for Remote Sites w/o Water on Site?

Present & Future Safety Improvements in Li-ion

- LTO a Very Safe Chemistry
 - Costly and You Lose Space Advantages
- LFP Better Safety then NCA, LMO, LCO, & NMC
 - About 4x Safer / Less Likely to Be Set Off / Propagate
 - ½ Gasses, ½ Heat

- Still Lots More Unsafe (Firewise) than Lead-Acid, Ni-Cd, NaNiCl, etc.
- Solid State (probably at least 5 yrs out full commercialization)
 - Replace (≥ 90%) Flammable Electrolyte with Polymer/Solid
 - Beware if Li-metal instead of Li-ion
 - Increases energy density, but raises the Fire Risk

How To Contact Me

- Curtis Ashton
 - curtisashton@ampowersys.com
 - (720) 845-0846

